

Infrastructures, supply and demand ... How to develop it in a coherent way?

Initial optimism was gradually impacted by implementation difficulties!

Source: The Economist

Hydrogen Projects

How to best ensure a coherent hydrogen development through all the value chain? The Bottom-up perspective: Hydrogen valleys

A majority of H2 projects are "hydrogen valleys":

- Focus on local hydrogen projects
- Repurposing of existing infrastructure creates important regulatory challenges
- Projects have different stages of maturity and viability is still uncertain

Source: **ENTSOG**

Hydrogen Networks

How to best ensure a coherent hydrogen development through all the value chain?

The Top-down perspective: Hydrogen Corridors

The REPowerEU Action Plan foresees the development of "Hydrogen Corridors":

- Long distance cross-border projects
- Limited impact on integrated H2 projects
- Mainly function as a means to balance potential supply and demand in different regions of Europe
- There are also uncertainties regarding the viability of these long distance projects:
 - Will depend on the real evolution of supply and demand for H2 across Europe
 - Interface between local and long distance infrastructure

Source: REPowerEU Action Plan (EC), 2022.

Hydrogen Network Costs

Table 4: Costs of hydrogen transport by pipeline based on literature

Study	Cost		Distance
	EUR/MWh	EUR/kg	Distance
IEA (2019)	30	0.9	1,500 km
	60	1.8	3,000 km
Navigant for Gas for Climate (2019) Retrofitted New	3.7 4.6	0.11 0.14	600 km
Joint Research Centre (2021) Range depends on utilisation factor	18 - 57	0.55 - 1.72	2,500 km
Hydrogen Council (2021) Retrofilled (low range) - New (high range)	3 - 28	0.08 - 0.85	1,000 km to 5,000 km
Guidehouse for European hydrogen backbone initiative (2022) Retrofitted New	3 - 4 6 - 12	0.08 - 0.85 0.19 - 0.35	1,000 km
Agora Industry (2024)	10 - 20	0.30 - 0.60	1,500 km
	45	1.35	3,000 km

Natural Gas Grid Tariffs

Transmission HP≈ 1€/MWh

Transmission +
Distribution
MP≈ 3€/MWh

Hydrogen Production Costs

Figure 20: Evolution of cost estimates of hydrogen produced by various technologies – January 2023-September 2024 – (FUR/kg)

\$H₂ PEM ≈ 4 x \$TTF ≈ 18 x \$HH

 $$H_2 SMR \approx 2 x $TTF \approx 9 x HH

Hydrogen production with SMR costs around the same as onshore wind generation 10 years ago

Source: ACER based on data from S&P Global Commodity Insights

Note: S&P Global Commodity Insights estimates cost based on a methodology that considers, among other parameters, the electricity input costs, and the capital and operational expenditures. Estimates on RFNBO compatible costs are available from April 2024 onward.

Figure 21: Breakdown of hydrogen production costs for alkaline (left) and PEM (right) electrolyser (EUR/kg)

Figure 22: Breakdown of hydrogen production cost for SMR with carbon capture (EUR/kg)

Gas and Power Competitiveness

In the Power Sector there is an alignment between Decarbonization through renewables and Competitiveness.

Power price decoupling from fossil fuels (Natural Gas) is a reality.

Would it be possible in the Gas Sector through hydrogen?

Higher CAPEX (RES2Power & Power2H₂) turns it more complex!!!

Efficient technology Power2Usefull Energy makes it more difficult!!! Gas2Heat vs RES2Power2Heat vs RES2Power2H₂2Heat

Hydrogen Demand

Figure 1. Hydrogen's competitive prospects for decarbonization by end-use sector

Phasing-out of Natural Gas: stranded assets and death spiraling

Source: ERSE

Gas Decarbonisation and H2 Package

Faced with these different scenarios in the development of the H2 sector and the initial mismatch between supply and demand, NRAs will have a fundamental role in **managing uncertainties** and **promoting**efficiencies at an early stage.

The Gas Decarbonisation and H2 Package offers NRAs tools to deal with these uncertainties:

- Transition period until 2033: NRAs will decide on derogations in order to stimulate the development of hydrogen markets
- Blending targets at interconnection points
- NRA participation in the network development plans at H2 TSO and DSO level and in the decommissioning and repurposing of phased-out natural gas infrastructure
- Duration of H2 capacity contracts up to 20/15 years
- Consultations with adjacent NRAs for the definition of tariff methodologies of shared IPs
- Approval of financial transfers between regulatory asset bases
- Decisions on inter-temporal cost allocation mechanisms

EDIFÍCIO RESTELO Rua Dom Cristóvão da Gama, 1, 3º 1400-113 Lisboa

Portugal

Tel: +(351) 21 303 32 00 e-mail: erse@erse.pt url: http://www.erse.pt

THANK YOU!

Hydrogen Production Costs

Figure 3.11 Hydrogen production cost by pathway, 2023, and in the Net Zero Emissions by 2050 Scenario, 2030

IEA. CC BY 4.0.

Notes: CCUS = carbon capture, utilisation and storage; w/= with; w/o= without. Cost ranges reflect regional differences in fossil fuel prices, renewable costs, CO_2 prices, technology CAPEX and OPEX as well as cost of capital. Natural gas price is USD 5-21/MBtu for 2021, USD 6-51/MBtu for 2022, USD 3-35/Mbtu for 2023 and USD 1-15/MBtu for 2030 NZE. Coal price is USD 9-270/t for 2023 and USD 1-120/t for the NZE Scenario in 2030. The levelised production cost of solar PV electricity is USD 20-120/MWh for 2023, USD 14-90/MWh for the NZE Scenario in 2030, with capacity factor of 12-35%. Onshore wind electricity levelised production cost is USD 23-110/MWh for 2023, USD 22-100/MWh for the NZE Scenario in 2030, with a capacity factor of 15-53%. The offshore wind electricity levelised production cost is USD 55-230/MWh for 2023, USD 36-145/MWh for the NZE in 2030, with a capacity factor of 32-67%. Electrolyser CAPEX is USD 950/kW for the NZE Scenario in 2030 and includes the electrolyser system, its balance of plant and EPC, installation cost and contingencies; electrolyser capacity factor assumed to be the same as the renewable power plant. The cost of capital is 6-20%. The dashed area represents the CO_2 price impact, based on USD 15-140/t CO_2 for the NZE Scenario. Renewable-based hydrogen production costs are capped at USD 12/kg H_2 . Water cost is not included. Other techno-economic assumptions are included in the Annex.

Sources: Based on data from McKinsey & Company and the Hydrogen Council; NETL (2022); IEA GHG (2017).