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Framework

e Computational Intelligence Society (IEEE)

* Scope:

* The Field of Interest of the Society shall be the theory,
design, application, and development of biologically and
linguistically motivated computational paradigms
emphasizing neural networks, connectionist systems,
genetic algorithms, evolutionary programming, fuzzy
systems, and hybrid intelligent systems in which these
paradigms are contained.



Computational Intelligence and Smart Grids

 Most Cl methodologies can be applied independently of the
Smart Grids deployment
e Complex or ill-defined problems
e Difficult optimization problems
e Qualitative or imprecise data
e Fast response needed
e Addressing uncertainty

e Smart grids provide additional intelligence through bilateral
communication, leading to new challenges, where Cl can
give specific answers

e Combining local and centralized control
e Creating new “outside the box” approaches



Topics

1.

INESC

Agent platform > Simulation > Policy tests
Fuzzy inference systems > Voltage control
Autoencoders (ANN) > State estimation

Fuzzy Power Flow > Steady-state security

Optimization through nature inspired methodologies
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Agent platform

e Competition is in energy and not only in electricity

Electricity may be generated from gas
e Heat may be generated from gas or electricity
e Physical networks may run side by side on the ground

e Consumers may opt for technologies and not only for
suppliers

e Regulators must be concerned with multi-energy market
interactions



Complexity of interactions
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A model for the retail market

* 19 agents

Economy

Commerc. cons.

LResidenc. cons.

Industrial cons.

L ]
Market Op.
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Consumer Group Agent

* Price Sensitivity Model

* Consumer Classifier

Consumer

e Share shifting
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Consumer Group Agent

. . ope share uture
e Economic feasibility check A Share
 Smoothing demand shift
current - tim e
share

e Transform energy group share into energy consumption and
market share
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Inside a Retailer Agent

e A retailer defines its market policy as a function of data
input from the Environment Agent and from internally
predicting and simulating the market

Competitor behavior Scenario evaluator,
predictor: strategy simulator:

Demand T 7
forecast

'y !

> Decision Maker =
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Example of simulation results

4 Prices In residential consumers

~ Prices In commercial consumers
+ Prices in industrial consumers
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Fuzzy control of voltage / reactive power

e Basic idea — cascading Mamdani controllers
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Fuzzy control of voltage / reactive power

e Relevant parameters

e SEVERITY of the operating limit violation

e The controller will try to eliminate the most severe violation (minmax
optimization)

e EFFICIENCY of the control action

e The controller will try to use the control action with foreseen greater
impact

e AVALABILITY of the control action

e The controller will tend to use at each moment the more available
actions while trying to maintain all the variables within the admissible
band and not in its limits
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The Concept of Autoencoder

e Auto-associative neural networks (AANN) or autoencoders
are feedforward neural networks that are built to mirror the
input space S in their output = the size of its output layer is
always the same as the size of its input layer.

w1

oo \l/ \l/ \l/ \l/ \l/ \l/

e An autoencoder is trained to display an output equal to its
input. With adequate training learns the data set pattern
and stores in its weights information about the training data

manifold.
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The Concept of Autoencoder

e |f an incomplete pattern is presented, the missing
components may be replaced by random values producing a
significant mismatch between input and output

e A search may be conducted by an optimization algorithm
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Fuzzy Power Flow

e A way of understanding the I{
influence of load and VAR
generation uncertainties in the
main state variables of a power JTe—T7
network

e Voltages 1
e Branch Flows / N,

Mw

-
e FPF deals with imprecise or T L
qualitative declarations —T' M 4

e Risk indices are produced to i

help the Decision Makers _w_r——-'_TT [—\
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Fuzzy Power Flow

e Fuzzy numbers for generation and load (active and reactive)
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Illustrative Results
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Congestion

CLASSIFIED  CLASSIFIED

Deterministic
AS POSITIVE AS NEGATIVE

Positive 3882 127
Negative 241 1032415

CLASSIFIED  CLASSIFIED

F
uzzy AS POSITIVE AS NEGATIVE
Positive 3922 87
Negative 919 1031737
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Final remarks

e Computational intelligence methodologies may bring new
(effective) answers to old and new problems

e An agent platform may be very useful for testing policies

e e.g. Imposing a minimum period before changing prices tend to
lower the prices

e Dealing with uncertainty is crucial, but the associated
decision issues should not be ignored

e The best forecast is the one that leads to more effective results

e Computational intelligence approaches are well established
now: “Primeiro estranha-se, depois entranha-se”



